Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy

نویسندگان

  • Daniel Abler
  • Vassiliki Kanellopoulos
  • Jim Davies
  • Manjit Dosanjh
  • Raj Jena
  • Norman Kirkby
  • Ken Peach
چکیده

Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Application of Markov-Chain Analysis and Stirred Tanks in Series Model in Mathematical Modeling of Impinging Streams Dryers

In spite of the fact that the principles of impinging stream reactors have been developed for more than half a century, the performance analysis of such devices, from the viewpoint of the mathematical modeling, has not been investigated extensively. In this study two mathematical models were proposed to describe particulate matter drying in tangential impinging stream dryers. The models were de...

متن کامل

Comparative study of predictive ability of AIDS incidence in HIV positive people using Markov model according to two criteria, WHO and CDC in CD4 cell categorization

Background: The Multi state Markov models have extensively application with categorization of laboratory marker of CD4 cells for evaluation of HIV disease progression. These models with different states result in different effects of covariates and prediction of HIV disease trend. The main purpose of this study was comparison of four and five states models with the three- state in order to sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013